科研人员研制高稳定性黑磷

近日,中国科学院深圳先进技术研究院喻学锋、王怀雨研发团队在二维材料领域取得新突破,制备出高稳定性黑磷,相关工作以封面文章Surface Coordination of Black Phosphorus for Robust Air and Water Stability 在线发表于化学刊物Angew. Chem. Int. Ed.。该工作由博士后赵岳涛等人完成。

作为二维材料的典型代表,石墨烯的研发荣获了2010年诺贝尔物理学奖,并掀起了人们研究二维材料的热潮。然而,由于石墨稀本身没有带隙,限制了它在半导体工业和光学器件等领域的应用。2014年,与石墨烯一样拥有二维层状结构的黑磷,被视为新的超级材料,刚一出现就引起了全世界的广泛关注。黑磷是一种天然的半导体,其带隙宽度可调、电学性能优越,被认为有望取代硅,成为半导体工业的核心材料。黑磷的光学性能同其它半导体相比也有巨大优势,它的半导体带隙是直接带隙,即导带底部和价带顶部在同一位置,这意味着黑磷可以和光直接耦合,构筑新一代光电器件。此外,黑磷还具有独特的力学、电学和热学的各向异性。尽管黑磷已在多个领域展现出巨大的应用潜力,它却存在着一个致命缺陷:缺乏稳定性。当接触水和氧气时,黑磷层片会在极短时间内氧化进而降解掉。这一缺陷极大地限制了黑磷的研究和工业应用。

为解决黑磷的这一“阿喀琉斯之踵”,研究团队创造性地提出用配位化学的方法来提高黑磷W020160325512839560450的稳定性。机理研究表明,黑磷之所以稳定性差,是因为在其蜂窝状结构中,磷原子与其它三个磷原子成键之后,外层仍有一对孤对电子,该孤对电子易被氧分子夺走,从而造成外层黑磷的氧化,而在有水存在的情况下,表面生成的氧化磷会迅速与水反应而降解掉,这样暴露出来的黑磷又会继续被氧化进而降解。从这一原理出发,研发团队设计了一种钛的苯磺酸酯配体,利用钛原子的空轨道和苯磺酸酯的强吸电子效应,该配体可与黑磷的孤对电子对进行配位,从而占据孤对电子,这样磷原子就无法再与氧气发生反应。对比实验表明:与未经修饰的黑磷会迅速降解不同,钛配体修饰的黑磷能在水中和湿度高达95%的潮湿空气中放置数日,而保持光学性能稳定。该修饰技术简单有效,在不改变黑磷晶体结构的前提下,就能极大提高它的稳定性。而这种高稳定性黑磷的成功制备,无疑可有效推动黑磷在光电器件等领域的工业应用,还将极大促进其在能源、催化、生物医学等领域的深入研究。该研发团队已经在黑磷研发领域申请PCT专利1项、国家发明专利3项,并在积极推进相关技术的产业化。

该项目得到了国家自然科学基金、广东省领军人才计划和深圳市孔雀团队等项目的资助。

论文链接:http://onlinelibrary.wiley.com/doi/10.1002/anie.201512038/full

(据中国科学院深圳先进技术研究院)

原创文章,如若转载,请注明出处。

相关文章

  • 单层石墨烯荷能重离子辐照损伤规律被揭开

    据中国科学院近代物理研究所报道,该研究所材料研究中心采用快重离子及高电荷态离子研究了单层石墨烯辐照效应,通过对石墨烯与块体石墨辐照损伤的实验和理论分析,获得石墨烯与块体石墨辐照损伤程度的变化规律,首…

    2016-02-17
  • 中美科学家有望合成新二维无机材料

    近日,南京师范大学化学与材料科学学院李亚飞教授课题组在二维纳米材料设计的研究中取得新进展。该成果以“Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative …

    2016-05-11
  • 石墨烯摩擦接触界面的状态演化

    近代摩擦学研究表明,三维固体材料在无磨损情况下的摩擦行为往往与界面真实接触面积的大小直接相关。而清华大学航天航空学院李群仰课题组与合作者于11月24日在《自然》在线发表题为“石墨烯摩擦接触界面的状态演化”…

    2016-12-02
  • 中国科学家成功构建可逆单分子光电子开关器件

    利用单个分子构建电子器件有希望突破目前半导体器件微小化发展中的瓶颈,其中实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键步骤。在过去20年,分子开关被广泛的研究,但仅有的几…

    2016-06-20
  • 科学家首次实现可塑性可调的石墨烯类突触器件

    近年来,随着特征尺寸的不断缩小,各种物理和技术上的制约使得微电子器件的发展遇到了瓶颈。类脑计算概念的提出,为微电子芯片的彻底革新提供了崭新的途径。人脑中有数以亿计的神经元,不同的神经元之间又由突触所…

    2016-02-18
  • 视频 | 麻省理工学院开发强度是钢10倍的多孔石墨烯材料

    MIT的研究小组设计了目前世界上强度最大的轻质材料。通过熔化和压缩石墨烯薄片,他们将石墨烯做成海绵状的立体结构,其强度是钢的10倍,但密度只有钢的5%。 石墨烯被认为是当今所有已知材料中强度最高的,然而,到…

    2017-01-12