地表层自适应光学系统提高天文观测分辨率

近日,在国家自然科学基金天文联合基金重点项目支持下,中国科学院光电技术研究所饶长辉研究团队成功研制国内首套地表层自适应光学(Ground Layer Adaptive Optics, GLAO)试验系统,与云南天文台1米新真空太阳望远镜对接后,于近日首次获得了太阳黑子和太阳米粒的大视场高分辨力自适应光学校正图像,标志着我国太阳自适应光学技术再次取得重大突破。

典型太阳活动区大小在1′~3′左右,传统自适应光学系统由于等晕区的限制,高分辨力校正视场只有10″左右,无法满足大视场高分辨力观测要求。GLAO是大视场自适应光学技术的一种,只针对地表层大气湍流进行波前探测和校正,虽然达不到接近衍射极限的分辨力,但是可以在大视场范围内提高成像质量。研究团队研制了大视场多通道相关夏克-哈特曼波前传感器,对1′视场内大气湍流进行波前探测,并提取地表层大气湍流引起的波前像差进行闭环校正,最终实现了大视场高分辨力成像。图1展示了活动区NOAA12480,TiO波段(中心波长7057Å,半宽6Å)的GLAO开环和闭环图像;图2展示了对太阳宁静区米粒结构的GLAO开环和闭环图像。可以看出,GLAO对大视场范围内的图像质量提升十分明显。

GLAO技术可为太阳物理学家研究太阳活动现象及物理本质提供了新的科学工具,以及更精确的观测数据,并为进一步开展大视场多层共轭自适应光学技术奠定基础。

图1活动区NOAA 12480的GLAO开环和闭环图像(7057@6Å)
图1活动区NOAA 12480的GLAO开环和闭环图像(7057@6Å)
图2 太阳宁静区米粒结构的GLAO开环和闭环图像(7057@6Å)
图2 太阳宁静区米粒结构的GLAO开环和闭环图像(7057@6Å)

(据中国科学院光电技术研究所)

原创文章,如若转载,请注明出处。

相关文章

  • 太阳大气7波段层析成像首次实现

    (据中国科学院光电技术研究所)近日,在国家高技术计划和国家自然科学基金共同支持下,中国科学院光电技术研究所饶长辉团队在国际上首次获得太阳大气可见至近红外7波段同时层析高分辨力图像。文献显示,目前国外太…

    2016-02-27
  • 温度变化对GPS台站周期性位移影响

    温度变化,会造成物质热胀冷缩,地面也不例外。实际上,地面温度变化是影响地壳形变的重要因素,其中最为显著的是地表的周年变化。GPS台站需实时向用户自动提供经检验的不同类型的GPS观测值等,它的位置精确度至关…

    2017-04-21